The heat equation with singular nonlinearity and singular initial data

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection

2 Solutions of equation with a reflection measure 10 2.1 Pathwise uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Convergence of invariants measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Existence of stationary solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Convergence of the semigroup . . . . . . . . . . ....

متن کامل

Rupture Solutions of an Elliptic Equation with a Singular Nonlinearity

We construct infinitely many non-radial rupture solutions of the equation ∆u = 1 up in RN\{0}, u(0) = 0, N ≥ 3 with p > pc(N − 1) := N − 1− 2 √ N − 2 2 √ N − 2− (N − 5) .

متن کامل

A Very Singular Solution of the Heat Equation with Absorption

Consider the Cauchy problem ut -du + u p ----0 on RN• (0, oo) (I.1) u > 0 on RN• (0, oo) (1.2) u(X, O) = c ~(x) on R, N, (1.3) where N _--> 1, c > 0 is a constant and ~(x) denotes the Dirac mass at the origin. A result of BREZlS and FRIEDMAN [6] asserts that if 1 < p < (N + 2)/N, then for every c > 0 there exists a unique 1 solution uc of (1.1)-(1.3). When p >= (N + 2)IN there is no solution of...

متن کامل

Explicit multiple singular periodic solutions and singular soliton solutions to KdV equation

 Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...

متن کامل

Heat Content Asymptotics with Singular Initial Temperature Distributions

We study the heat content asymptotics with either Dirichlet or Robin boundary conditions where the initial temperature exhibits radial blowup near the boundary. We show that there is a complete small-time asymptotic expansion and give explicit geometrical formulas for the first few terms in the expansion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2006

ISSN: 0022-0396

DOI: 10.1016/j.jde.2006.07.007